
Forensic Audit Logging for PostgreSQL

Moshe Jacobson

http://cyanaudit.neadwerx.com

The Situation

•Data is mysteriously wrong/missing

•Legal is asking for records

•Who, when, how?

•How to respond?

•CYA with proof!

Application-Level Logging

• Explicit

• Tedious

• Easy to miss something

• Not always consistent

• Increases development time

• Better alternative?

Database-Level Logging

• pg_audit https://github.com/jcasanov/pg_audit

• pgtrail http://code.google.com/p/pgtrail/

• tablelog http://pgfoundry.org/projects/tablelog/

• Audit trigger 91plus

http://wiki.postgresql.org/wiki/Audit_trigger_91plus

• Half-baked home-grown solutions?

• I wanted something better.

https://github.com/jcasanov/pg_audit
https://github.com/jcasanov/pg_audit
https://github.com/jcasanov/pg_audit
http://code.google.com/p/pgtrail/
http://code.google.com/p/pgtrail/
http://code.google.com/p/pgtrail/
http://pgfoundry.org/projects/tablelog/
http://pgfoundry.org/projects/tablelog/
http://pgfoundry.org/projects/tablelog/
http://wiki.postgresql.org/wiki/Audit_trigger_91plus

Our Application

•80,000 users

•1TB database

•450 tables, 3200 columns

•14 million daily page requests

•8.5 million daily database updates

•99.999% uptime SLA

Wishlist

• Extension-based

• Space-efficient, organized logging

• Per-column control of logging

• Attach descriptions to events

• Scalability to years’ worth of logs

• Export / import between log & files

• Automated log maintenance

• Easy recovery from mistakes

Cyan Audit - Logged Data

• Timestamp

• Name of table & column modified

• Integer PK of row modified
• You do have integer surrogate PKs, right??

• Application-level userid of responsible user

• Transaction ID

• Application-supplied description

• Operation type ('I', 'U', 'D')

• Old and new values (stored as text)

Installation – Part I

• Unpack extension tarball, “make install”

• Configure custom_variable_classes

in postgresql.conf (9.1 only):

custom_variable_classes = 'cyanaudit'

• Create extension

db=# create schema cyanaudit;

db=# create extension cyanaudit schema cyanaudit;

• Set up logging triggers

db=# select cyanaudit.fn_update_audit_fields();

• Now you’re logging!

Installation – Part II

• Install cron jobs to rotate and archive logs

• Set your database-specific settings

alter database mydb

 set cyanaudit.archive_tablespace = 'big_slow_drive';

... set cyanaudit.user_table = 'users';

... set cyanaudit.user_table_uid_col = 'entity';

... set cyanaudit.user_table_username_col = 'username';

... set cyanaudit.user_table_email_col = 'email_address';

• Add cyanaudit schema to database search path

alter database mydb

 set search_path = public, cyanaudit;

Post-installation

Post-installation

Selecting what to log

• Upon installation,

all fields are enabled

• Consider high traffic fields

• tb_audit_field has

one row per table/column

• "active" boolean controls logging for a column

• select fn_update_audit_fields()

reindexes fields after DDL

• Disable logging for a session:
set cyanaudit.enabled = 0

Selecting what to log

Selecting what to log

Selecting what to log

Selecting what to log

Selecting what to log

Selecting what to log

Querying the audit log

View: vw_audit_log

• Columns:
recorded | uid | user_email | txid |

description | table_name | column_name |

pk_val | op | old_value | new_value

• Millions of rows accumulate quickly
• Especially when you’re doing admin work and forget to turn off logging…

• Use indexed columns when querying:
recorded, table_name + column_name, txid

Example

Example

Example

Reconstructing Queries

View:
vw_audit_transaction_statement

Reconstructs queries effectively equivalent

to original DML

Columns:
txid | recorded | email | description | query

Reconstructing Queries

Reconstructing Queries

When You F*** Up…

• We can reconstruct queries…

Why not reverse them?

• fn_undo_transaction(txid)

Undoes recorded changes for txid

• fn_get_last_audit_txid()

Gives txid of last logged transaction

• select fn_undo_last_transaction()

Combines two functions above.

When You F*** Up

When You F*** Up

Application Integration

 How DBAs see application code:

Application Integration

• Don't want to? Don't have to!

• Two modifications if you want:

• Attach UIDs to transactions

• Attach descriptions to transactions

Attaching UIDs to DML

• fn_set_audit_uid(uid)

• Match current_user to

user_table_username_col

• Otherwise, assume 0

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Attaching UIDs to DML

Labeling transactions

• Not everyone understands

the schema.

• Let's help them out.

• Two functions for labeling transactions:

 fn_label_audit_transaction(label, txid)

 fn_label_last_audit_transaction(label)

Labeling transactions

Labeling transactions

Log Rotation/Archival

• You’re gonna run out of space eventually.

• What is the solution?

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

Log Rotation/Archival

• cyanaudit_log_rotate.pl

Log entries since last rotation become a new child

partition of parent table tb_audit_event.

• cyanaudit_dump.pl

Back up audit data, remove old tables.

• cyanaudit_restore.pl
Restore dumps created with cyanaudit_dump.pl

Wishlist – Nailed it!

• Extension-based

• Space-efficient, organized logging

• Per-column control of logging

• Attach descriptions to events

• Scalability to years’ worth of logs

• Export / import between log & files

• Automated log maintenance

• Easy recovery from mistakes

• Plus: Released under PostgreSQL license

Cyan Audit Caveats

• PostgreSQL version compatibility:
• >= 9.3.3: All features supported

• < 9.3.3: No DDL triggers. After any DDL you must
select fn_update_audit_fields()

• < 9.2.0: Must modify postgresql.conf with
custom_variable_classes = cyanaudit

• < 9.1.7: Not supported

• Logs only tables with integer PK.

• Logs only public schema.

• Truncates are not logged.

• Does not store original SQL.

Cyan Audit Challenges

• Proper behavior with pg_dump/pg_restore

• Log tables using OID as PK

• Log tables in other schemas than public

• Amazon RDB – non-extension version?

• Automatic testing

• Leverage 9.4’s logical replication

• Wide use, inclusion with PostgreSQL

core! YEAAH!

Questions? Comments?

Moshe Jacobson moshe@neadwerx.com

Download: http://cyanaudit.neadwerx.com

Thanks to Nead Werx, my employer, for

sponsoring the development of Cyan Audit.

mailto:moshe@neadwerx.com
http://cyanaudit.neadwerx.com/

